

PM_{2.5} PAHs in large urban agglomerations in Bulgaria

Stela Naydenova (1), Anife Veli (1), Zilya Mustafa (1), Elena Hristova (2), Lenia Gonsalvesh-Musakova (1)

- 1. Prof. Dr Assen Zlatarov University, Burgas, Bulgaria
- 2. National Institute of Meteorology and Hydrology, Sofia, Bulgaria

1. Background – Environment, Air Pollution

2. Motivation - Particulate Matter (PM), Polycyclic Aromatic Hydrocarbons (PAHs)

- 3. Goals PAHs in $PM_{2.5}$
- 4. Materials and methods $PM_{2.5}$ sampling and PAHs analysis
- 5. Results and discussion

6. Conclusions

1. Background

Source: CAMS, 2019

Paper Nr 285

ENVIRONMENT

- Clean environment normal existence;
- Population, industrial and energy production, pollution growth;
- Deteriorated environmental condition;
- Serious problems about human health and biosphere.

AIR POLLUTION

- The biggest environmental health risk in Europe;
- Levels of air pollutants still exceed;
- Huge impact on human health and the environment.

2. Motivation

3

AIR

- The most used environmental resource ;
- 55 m³ air per 24 hours for a human;
- 430 000 premature deaths in Europe because of air pollution;
- The impact of individual pollutant is well known;
- The impact of PM depends of their size and content;
- PAHs cause carcinogenesis and mutagenesis.

Springer SPRINGER NATURE Online | 10-13 June 2021

3. Goals

aper Nr 285 4

Springer SPRINGER NATURE

Source: Therese van Wyk,, 2021

PAHs in PM_{2.5}

- PAHs content in PM_{2.5};
- Percentage of PAHs in PM_{2.5};
- Identification of pollution sources at local area level.

4. Materials and methods

Paper Nr 285

5

Sampling

- PM_{2.5} sampling in accordance to EN 12341:2014;
- October 2020;
- Sofia and Burgas (Bulgaria).

Sample preparation

- Spiked filters with recovery standards;
- Ultrasonicated extraction with dichloromethane;
- Extracts purification and concentration.

Analysis

19 PAHs were analyzed by GC–MS/MS, Thermo Scientific Trace 1300/TSQ 8000 in the selected reaction monitoring (SRM);

Internal standard calibration technique.

Springer SPRINGER NATURE Online | 10-13 June 2021

5. Results and discussion

285 Paper N

Total concentrations of PAHs and [<i>BaP</i>]eq in PM _{2.5}					
	Sofia		Burgas		
Date	Σ PAH PM _{2,5}	$\Sigma [BaP]_{eq}$	Σ PAH PM _{2,5}	$\Sigma [BaP]_{eq}$	
	ng m ⁻³ (%)*	ng m ⁻³	ng m ⁻³ (%)*	ng m ⁻³	
5 10 2020	1 389 (0 010)	0.019	0 828 (0 004)	0.039	
7.10.2020	1.075 (0.011)	0.054	0.515 (0.004)	0.006	
9.10.2020	1.844 (0.023)	0.107	0.380 (0.006)	0.002	
11.10.2020	1.620 (0.013)	0.136	0.634 (0.005)	0.013	
12.10.2020	0.760 (0.006)	0.036	0.361 (0.002)	0.001	
14.10.2020	1.881 (0.021)	0.140	0.709 (0.011)	0.029	
16.10.2020	1.398 (0.017)	0.083	0.489 (0.003)	0.004	
18.10.2020	2.039 (0.027)	0.173	0.884 (0.027)	0.031	
19.10.2020	5.176 (0.054)	0.563	2.001 (0.019)	0.180	
21.10.2020	5.721 (0.048)	0.665	-	-	
23.10.2020	6.934 (0.037)	0.799	1.166 (0.005)	0.087	
25.10.2020	11.331 (0.045)	1.524	1.226 (0.005)	0.067	
26.10.2020	3.927 (0.035)	0.418	0.759 (0.003)	0.025	
28.10.2020	5.367 (0.024)	0.697	-	-	
Mean value	3.604 (0.027)	0.387	0.829 (0.008)	0.040	
RSD, %	84.5	110.6	55.6	127.6	

RSD - Relative Standard Deviation

*Sum of PAHs as a part of $PM_{2.5}$, %.

5. Results and discussion

Meteorological conditions

	Sofia		Burgas	
	Mean	RSD,	Mean	RSD,
	value*	%	value*	%
WS, m s^{-1}	2.6	55.2	3.6	17.0
RH, %	76.1	13.3	76.8	15.2
Temp, °C	12.2	33.3	17.9	15.6
DewP, °C	7.6	46.9	13.4	33.4
Vis, km	8.9	12.2	9.6	6.4
Press, mbar	1017.3	0.5	1015.4	0.4

*Mean value for the sampling period of the average values for 24h; RSD - relative standard deviation; WS - wind speed; RH - relative humidity; Temp – temperature; DewP - dew point; Vis - visibility; Press – pressure.

Correlation coefficients

	Sofia	Burgas
PM _{2.5}	0.77	0.08
WS	-0.52	0.00
RH	0.40	-0.54
TEMP	-0.59	-0.57
DEWP	-0.42	-0.67
VIS	-0.49	0.04
PRESS	0.38	0.81

Statistically significant correlation coefficients (sign. p < 0.05) are in bold.

Paper Nr

285

5. Results and discussion

Relative percentages of PAHs - Burgas 100% 7-RING 90% 6-RING 80% 5-RING 70% 4-RING 3-RING 60% 50% 40% 30% 20% 10% 0% 6.10.2020 12.10.2020 25.10.2020 5.10.2020 8.10.2020 9.10.2020 10.10.2020 11.10.2020 13.10.2020 14.10.2020 15.10.2020 16.10.2020 17.10.2020 18.10.2020 23.10.2020 24.10.2020 19.10.2020 20.10.2020 21.10.2020 22.10.2020 26.10.2020

Relative percentages of PAHs - Sofia

Diagnostic ratios

285

	Sofia	Burgas	Patarana source omission	
	MV(RSD,%)	MV(RSD,%)	Reference source emission	
	0.52 (9.9)	0.49 (10.2)	0.56 (coal)	
IndP/(IndP+BghiP)			0.60 (wood burning)	
			0.35 – 0.70 (Diesel emission)	
BaP/(BaP+Chr)	0.34 (22.2)	0.28 (29.1)	0.5 (Diesel)	
BbF/BkF	0.98 (8.8)	0.74 (39.2)	>0.5 (Diesel)	
	0.82 (32.9)	0.45 (38.9)	<0.5 (non-Traffic emission)	
BaP/BghiP			>0.5 (Traffic emission)	
			0.9 – 6.6 (Coal combustion)	
In dD /DahiD	1.08 (19.0)	0.99 (17.6)	<0.4 (Gasoline)	
Inur / Dgnir			≈ 1 (Diesel)	
BaA/(BaA+Chr)	0.37 (6.8)	0.36 (8.9)	>0.35 (Combustion)	
MV – Mean \	Source: Khan, M.B. et al, 2018			

Springer SPRINGER NATURE Online | 10-13 June 2021

8

9

- The study thoroughly assessed the content and pattern of distribution of **PAHs** in fine particulate matter, sampled in **two large Bulgarian cities** Sofia and Burgas.
- Results reveal that PAHs concentrations in Sofia are higher than those in Burgas, but none of the averaged Σ[BaP]_{eq} does not exceed the annual limit value of 1 ng m⁻³ set for BaP.
- Linear regression analysis of total PAHs concentrations with PM_{2.5} and some meteorological parameters described a significant correlation. For Sofia between PAHs and PM_{2.5}, wind speed and temperature, and for Burgas - relative humidity, temperature, dew point and atmospheric pressure.
- Establishment of the PAHs composition in PM helps to identify the pollution source;
- PAHs bound to PM_{2.5} originate from pollution sources which are rather pyrogenic.
- The obtained results may trigger competent management decisions by the authorities, which may lead to improved air quality.

Thank you!

Stela Naydenova steltion@gmail.com

Sponsors / Partners: This study was performed with the financial support from the Bulgarian National Science Fund through contract № KП-06-H 34/9 -19.12.2019.

CARB

Study of black CARBOn and some important hydrocarbons in the atmospheric AEROSOL in an urban environment

Springer SPRINGER NATURE Online | 10-13 June 2021