

Effects of Saharan Dust Intrusions on Precipitation Chemistry In Bulgaria

Emilia Georgieva, Elena Hristova, Blagorodka Veleva

National Institute of Meteorology and Hydrology - NIMH

Motivation - 1

1. Dust storm – unique form of natural hazard with impact on

- Human health (respiratory & cardiovascular systems, meningitis)
- Air quality
- Aviation
- Energy and Industry
- Agriculture
- Ocean fertilization&algal bloom
- Weather and Climate

Motivation - 2

Unique form of natural hazard: Saharan Dust travels $10^2 - 10^3$ km from the source region

Dust particles undergo extensive changes during their transport

Rain (Wet depositions) – one of the mechanisms for removal of dust particles

1890 Source WMO https://community.wmo.int/sds-hurricanes

Saharan Dust outbreaks in BG

1. African Dust frequency (%) (2001-2011) at Background AQ stations

27 % of the days in 2019 With max in Spring

2. Days with sand storms in BG based on satellite data (2004-2019)

Maria Dimitrova, SRTI-BAS, 2020

Goals & Methodology

Analyse the influence of Saharan Dust on the chemical composition of rain samples collected in Bulgaria in the period 2017-2018

How to achieve the goal:

synergetic use of various observations & models

- rain samples & chem. analysis
- satellite data for AOD
- modelling results (Dust and AQ) over Europe & NA

Precipitation samples - 3 sites

Sofia - urban Cherni Vruh 2286 m a.s.l

Sampling: daily, campaigns 2017-2018 **Chem.amalysis:** pH, conductivity-EC, main ions Cl^{-} , SO_4^{2-} , NO_3^{-} , NH_4^{+} and elements Na, K, Mg, Ca, Fe, Si, Zn, Cu

Identification of Saharan Dust outbreaks

Operational Models:

- WMO SDS-WAS NAMEEU (ENS)
- Copernicus: CAMS-ENS
- Copernicus: CAMS-ECMWF
- > BSC- DREAM
- > USA NRL

Back-trajectory model

> HYSPLIT

Satellite data

MODIS Terra&Aqua, and EUMETSAT

26 daily samples were selected

A, B groups of samples

Direct influence (N.16)

Indirect Influence (N.10)

NCEP/ NCAR reanalys is

Composite maps of 700 mb WIND (m/s)

1890

AOD – composite maps

1890

CAMS-ECMWF – model Composite maps for AOD for the days in groups A, B

NIMH

Chemical composition – example A,B

NIMH

1890

Chemical composition – avg A,B

Contribution of different elements to total ionic concentrations (TIC)

NO₃-, Non sea salt SO₄²⁻ Ca⁺ higher in B samples (indirect influence)

- The total ionic concentration in both A and B samples consist mainly of $nssSO_4^{2-}$, $NO_3^- NH_4^+$ (A 44% and B 58%).
- For A the air masses passing over the Mediterranean Sea are enriched with sea salt aerosol (个CI, Na)
- ➤ The higher contribution of sulphates, nitrates and ammonium ions in B samples can be explained by the enrichment of air masses with substances of anthropogenic origin

NIMH

pH -??

The pH values ranged from 4.1 to 7.4.

1890

A: 40% - acidity range (pH < 5.0), 6.7% - slightly acidic range (5.0 – 5.5) 6.7% - alkaline range (> 7.0) 33% - neutral range B:

30% - acidity range (4.5-5.0), 10% - slightly acidic range, 20% - slightly alkaline range. 40% - neutral range

Key messages – Eli pomisli

pH .. Values in the alkaline range ??

- ightharpoonup prevailing: nssSO₄²⁻, NO₃-, NH₄+
- The precipitation associated with dust intrusions is characterized by higher concentrations of terrigenous elements (Ca, Si, K)
- In both types of intrusions the correlation between $nssSO_4^{2-}$ and Ca is relatively high, indicating similar source of origin.
- the chemical composition depends on the type of Saharan intrusions (direct, or indirect). For indirect - ????
- The concentrations of Si and Ca were significantly higher (up to 1.5 and 25 mg.l⁻¹) for A samples.
- In B samples higher concentrations of sulphates, nitrates and ammonium ions suggest enrichment of air masses with anthropogenic pollutants.
- More data /cases are needed for firm conclusions

Acknowledgments

The study was inspired by the **COST CA 16202 inDUST**

"Network to Encourage the Use of Monitoring and Forecasting Dust Products"

This study was performed with the financial support from the **Bulgarian National Science Fund** trough contract N. DN-04/4-15.12.2016.

The **SIDUAQ project** Satellite Information Downscaled to Urban Air Quality in Bulgaria" is funded by ESA and the Government of Bulgaria through the ESA Contract No.4000124150/18/NL/SC

1890

БЛАГОДАРЯ за ВНИМАНИЕТО!

emilia.georgieva@meteo.bg